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Theory of a two-stage hypervelocity launcher to give 
constant driving pressure at the model 

By F. SMITH 
The War Office, Royal Armament Research and Development Establishment, 

Fort Halstead, Kent 

(Received 6 December 1962 and in revised form 11 March 1963) 

The increase in hypervelocity launcher velocities, the tendency for models to 
become more fragile and the use of sabot techniques has made it increasingly 
more important to reduce peak accelerations during the launch phase. At  the 
same time a high acceleration must be maintained to enable a launcher barrel of 
reasonable length to be used. This paper considers the theoretical design of a 
launcher to give constant acceleration to  the model. A similarity solution is 
found for the launcher barrel and the solution is extended to the first stage of 
the launcher. Departure from ideal gas laws is also discussed and the theory is 
extended to include the effect of molecular volume. The motion of the driving 
piston in the first stage is considered in detail and techniques to ensure that the 
piston motion results in constant base pressure on the model are presented. 

1. Introduction 
The design and development of launchers to accelerate models up to 20,000 

ft./sec started several years ago. In many laboratories in U.S.A. and Canada 
use has been made of chemical propellants, explosives, oxygen-hydrogen com- 
bustion or combinations of these to supply energy to the first stage of two-stage 
launchers. Other simpler approaches have used explosives or shaped charges 
accelerating the model directly, although in these cases the model is often of 
unknown mass and shape. 

We started at R.A.R.D.E. in 1957 on the theoretical design of a launcher to 
achieve velocities of the same order of magnitude (Smith 1958), the chief differ- 
ence in our approach being to use light gases at  high pressures but room tem- 
peratures. The advantages of this approach are that relatively conventional 
engineering techniques are used and that gases of known composition and at  
known pressure lead to an easier theoretical design. The disadvantages lie in 
the less convenient handling of the energy source and the time needed to charge 
pressure vessels to a high pressure. 

Launchers designed some years ago have been developed to give velocities 
higher than the design velocity, possibly because, as this paper will show, im- 
perfect gas effects are favourable. At R.A.R.D.E. velocities exceeding 30,000 
ft./sec have been achieved, and the author is aware of two laboratories in the 
U.S.A. where this figure has also been exceeded. In  spite of this development 
there is a need for still higher velocities in order to simulate upper atmosphere 
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and space flight, and to advance the understanding of hypervelocity impact. 
At the same time, this need for higher velocities is coupled with a need for more 
complex models which are difficult to accelerate without damage. 

These requirements led Charters & Curtis (1962) to propose a launcher based 
on an extruding piston and designed to give a constant base pressure at  the model. 
Some preliminary results by the method of characteristics have been obtained 
on a high-speed computer. The object of the present paper is to present a simi- 
larity solution to the problem of constant base pressure. The solution is extended 
to the complete design of a two-stage light gas launcher. 

2. Similarity solution for a perfect gas 

the descriptive suffices 0, r ,  s, i are defined. 
The general arrangement of the two-stage launcher is shown in figure 1, where 

Reservoir Pump tube Launcher 

I Piston rSubscript i Model 
I J 

1 

& Subscript s/” Subscript o 
Conditions k X  
subscript r 

FIGURE 1. General design of light gas launcher. 

Let us consider the usual equations of unsteady flow in a duct of constant area. 
In  the launcher barrel, we have 

ap ap au 
z + u - + p -  = 0, ax ax 

where p is density, u velocity and p pressure. 

(see equation (6) below) 
These equations can be re-written as the well-known characteristic equations 

S [ K + u ] + ( u - i a ) -  at y - i -  ax a [  __ 7 - 1 -  Za +,I=,, (3) 

where a = (yp/p)g is the speed of sound. 
Let us look for a similarity solution of the form 

u = U(t) .  (4) 

If such a solution applies then all gas particles will have the same velocity as the 
model at  any given time. Substituting (4) into ( 1 )  and (2) we find that 

u = at 
is such a solution. With the use of 

( 5 )  
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a2 = const.+&(y-1)a2t2-(y-1)ax. ( 7 )  
we find that 

This similarity solution has been given by Stanyukovitch (1960). At the model 

assuming p o  constant. Here A denotes cross-sectional area. If we choose 
a = poAo/mo then, at the model, a: = const. This is consistent with constant 
po, so that the similarity solution 

is consistent with constant pressure on the model. If the conditions a,, po ,  m,, 
A ,  at the model are taken as reference and the definitions 

are introduced, equation (7) can then be expressed non-dimensionally as 

G 2  = 1 + * (y  - 1)  t 2  - (y  - 1) x. (11) 

(12) We also have p = c27/(7-1), p = g ( 7 - 1 ) .  

2.1. Conditions at launcher entry 

Using suffix i to denote conditions just downstream of the inlet to the launcher 
barrel where x = 0, we have 

- u. = t .  a 2) 

a; = l+&(y- l ) f& 
pi = [ 1 + t ( y  - 1) q ] Y / ( Y - l ) ,  

pi = [ 1 + &(y - 1) i5]1/(7-1). 

The mass E, of gas in the launcher barrel is given by 

In the two-stage light-gas launcher the supply of gas to the barrel at the 
correct rate, i.e. at the correct mass flow and pressure, is provided by the pump- 
tube piston acting on the driving gas (figure 1). It is now assumed that the flow 
in the pump tube is steady and one-dimensional with no aerodynamic loss at 
the entry to the launcher barrel. At  the entry the energy equation for steady 
subsonic flow is 

2 -  2 -  - 
---a;+E: = __ a: + u,". 
Y - 1  Y - 1  

(18) 

Provided the area ratio ,& ( = AJA,) is sufficiently large GS can be neglected. 
Then from equation (14), 

z; = 1 + (y  - 1) f; = pp-1N~ = pLr-1). (19) 
8-2 
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After sonic conditions have been reached, the velocity at the launcher entry 
is limited to the local sonic value, and it is no longer possible to match the entry 
requirements of the similar solution. It will be assumed that the similar solution 
for the greater part of the launcher barrel is linked to the sonic condition at  the 
entry by an unsteady flow up to the limiting characteristic, Q ,  which corresponds 
to the first time at  which sonic flow was reached at  the throat. 

Then equation (19) is replaced for sonic entry flow by 

z; = &(r+ l)a;, (20) 

where ai is given by the characteristic solution. 
The characteristics of the similar solution are given by 

2 
P,Q = ----Z_+;il= const., 

Y - 1  

and their respective velocities are ?i & a. From equations (31) and ( 1  1) a unique 
characteristic diagram can be obtained (as in figure 2 for y = 1.4). 

From these unique solutions, which are similar to the sonic point and similar- 
characteristic beyond this point, a non-dimensional chart relating a,, Tii ,  $, 
a,, pi and F ,  can be constructed. Figure 3 shows such a chart for y = 1.4. The 
sonic point is marked to indicate the transition from one solution to the other 
and an example is shown (by arrows) to illustrate the relation between the 
curves. The variation of %i, and p ,  with time can be used to analyse the motion 
of the pump-tube piston. 

For convenience the gas-dynamic parameters inthe pump tubewill beexpressed 
in terms of V,, the volume in front of the piston, and nag - m,, the mass of gas 
in the pump tube at any given time. Thus we have 

psv, = mg-m,, (23) 

or, with % = -  - EP, 
aim,’ 

- 
(33) yq(?J-l,v = 6 --n we have s g 21. 

From the foregoing equations and figure 3, Zs, so, a, can be obtained, giving the 
variation of with time. 

This is the matching condition for the flow required by the launcher barrel. 
We will now assume that the volume change is produced by the pump-tube piston 
of mass mp ( =  Epmo). Obviously, the motion of this piston will be governed 
primarily by the back pressure p ,  in the pump tube, particularly in the final 
stages of the motion where the driving pressure p ,  is very much smaller than p,. 

- 
Taking A,  as constant we have 

P S Z  d2E _ -  - 
in,, dt2’ 

or (34) 

Equation (24) must give the same value for as equation (23) in order that the 
pump-tube piston shall drive the model with a constant base pressure at  the 
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model. In  order to match equations (23) and (24) we have three parameters 
available, i.e. K,,  K,, L@@%,. 

The technique of matching will be discussed in a later section. 
However, the theory so far has been for an ideal gas with y = 1.4; we must 

now consider the effect of gas imperfections. 
Throat 

t 
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FIGURE 3. Non-dimensional chart for Z,, t,, Q,, pi, Fp,. 
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3. Similarity solution for an imperfect gas 
In  view of the high temperature and very high pressures in the pump tube and 

launcher barrel, we must consider deviations from the ideal gas laws used in $2. 
Dissociation and ionization effects will be ignored for hydrogen since under the 
conditions practically obtainable in a light gas launcher these effects are negli- 
gible. The imperfect gas relations are given in a report by the staff of the Ames 
Laboratory, N.A.C.A. (1953). The principal imperfections to be considered are 
due to molecular volume, molecular attraction and molecular vibration. Mole- 
cular attraction is easily shown to be unimportant when the pressure is much 
greater than the critical pressure. Corrections for molecular vibration lead to 
very intractable equations and are best dealt with by a step-by-step method. 
Typical calculations have shown that the corrections due to molecular vibration 
do not significantly affect the motion of the model and the pump-tube piston 
for T,,, < 4000"K, although possible effects should be checked for any par- 
ticular launcher design. Therefore only the effect of molecular volume will be 
considered here. 

The gas equations with the effect of molecular volume included are 

2 - YPV2 p ( v -  b )  = RT, p ( v -  b ) y  = const., a - __ 
V-b '  

where y has the perfect gas value, v is the specific volume and b is the molecular 
volume. 

Equations (2) and (3) are now replaced by 

au au 2 aw 
at ax y - i  ax -+u-+-w- = 0,  

2 at ("" y - 1 -  + u) + (u & .)a ax (%. y - 1 -  + .) = 0, (27) 

where w2 = p(yv-b) ,  c2 = yp(v-b).  (For an ideal gas, a = c = w = ypv.) At 
the throat the energy equation is now 

2 
U2f- 

Y - 1 w2 = const* 

We may arbitrarily choose either uo, co or wo to produce non-dimensional 
coefficients. Since the energy equation links the steady to unsteady flow at the 
throat it is appropriate to choose wo. Terms involving wo in their non-dimen- 
sional form will be denoted by a tilde, e.g. a" = a/wo. Thus we get 

where 
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The energy equation becomes 

732 = l+g(y-l)P-((Y-1)2. (33) 

(34) At the throat 

and using the characteristic equations 

u -  2 
uo-ui = __ 

Y - 1  

4(y - 1) t5 = (1 - Y) [&Y-W - 11 + Y(P3 - 11, 

( C i - E o )  = (," __ (1 - Y)+ [j?Ip-lw - 11. (35) 

FIGURE 4. Non-dimensional chart for ?El, ff, a,, pi ,  p8.  

It can be seen from equations (25) that the effect of molecular volume is to 
increase the value of the speed of sound above its perfect gas value and thus 
increase the value of ti at which sonic flow is reached at the throat. If the initial 
value of the specific volume, vo, is sufficiently small the flow remains subsonic 
at the throat. Por hydrogen this corresponds to w8/po < 6500 for < 20, where 
wo is measured in ft./sec and p o  in 1b./h2. Outside this limit a characteristic 
solution must be calculated near the throat. 

With the energy equation (28) and ignoring us as before we have 

73: = 2635- 1, (36) 

and (1- Y) (&-W- l )+  Y(ps-l) = 2(1- Y)($'-1)/y-1)+2Y(j5i-1). (37) 

Using equations (29) to (37) we can now construct non-dimensional charts 
for a real gas with the effect of the molecular volume included. Figure 4 shows 
such a chart for hydrogen with yperfect = 1.415. Y (or wt/po) is an added variable 
and a practical range of wt/po of 2000-6000 has been taken; wo is expressed in 
ft./sec, po  in lb./in.2. 
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Comparison with figure 3 shows that substantial increases in velocity and 
reductions in peak pressure result from including the molecular volume. Physic- 
ally, this is because it is difficult to force gas of a limited minimum volume into 
the launcher barrel, and as a result the pressure at  the throat, which is non- 
dimensionally equal to the mass of gas and model combined, is substantially 

8000 

6000 

4000 
NO 

4 

2000 

ReaI gas H, .. 

0 5 10 15 20 0 5 10 15 20 
- - 
m s  " I  

FIGURE 5. Pump-tube charging conditions 
(TI = initial temperature in pump tube; V, = 
initial volume of pump tube). 

FIGURE 6. Chart relating c8 and % i t .  

reduced. This is somewhat offset by the increase in the speed of sound, which 
reduces the time required to transmit pressure changes from the throat to the 
model. Consequently the drive at the throat must be maintained for a longer 
time for the last characteristic to reach the model as it leaves the launcher. 
Further, the relation between pressures in the stagnation region and the throat 
leads to a much reduced peak pressure. 

Two further charts are given in figures 5 and 6. Figure 5 enables the initial 
conditions in the pump tube to be linked to the variables wt/po and X, of figure 4. 
Figure 6 gives to assist in calculating the motion of the piston during its 
driving motion : here 

(38) 

and (39) 

4. Matching of piston motion 
As discussed in $52 and 3 the piston motion has to satisfy the mass-flow 

requirement of the barrel as indicated by full lines in figures 7 and 8. The design 
parameters are the mass mp of the pump-tube piston, the pump-tube area A,  and . 
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the velocity of the piston when the model starts to move. These parameters 
appear as TEJA;, Kl, K 2  in equation (39). The broken curves in figures 7 and 8 
show the result of attempting to match the requirements for ideal and real gases 
respectively. It will be seen that the match is reasonably good and the curves 
give the mass Kg of gas required, the mass TE, of the piston, and the piston velo- 
city from the initial slope of the pressure curve. Where the curves do not match 

- 
0 1 2  

0 1 2 
FIGURE 7 
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FIGURE 7. Matching of mass flow and pressure requirements for piston motion. (a )  Simple 
match; (b)  excess gas compared with ( a )  with 100% gas leakage starting a t  t i  = 1.2; 
( c )  excess gas and straight taper extrusion to throat starting a t  = 3. __ , Mass flow 
requirement; . . ., pressure requirement. 

FIGURE 8. Matching of mass flow and pressure requirements for piston motion. (a )  Simple 
match; ( b )  simple match; (c) excess gas compared to ( b )  and port of unit volume a t  = 2.  
-, Mass flow requirement; . . . , pressure requirement. w;/p,, = 4000. 

neither is correct, the true piston motion being a compromise between the two 
curves. However, for a real gas, towards the end of the piston motion, the gas 
behaves more like a liquid than a gas so that the piston motion will be nearer 
to the mass flow requirement curve than to the pressure requirement curve. 

Since a mismatch between theserequirements will result in a change of pressure 
a t  the base of the model, it is desirable to attempt a better matching of the two 
curves. To do this we require more variables than the three so far available and 
this can be achieved either by adjustment of the mass of gas during the piston 
motion, or by an adjustment of the effective piston mass, or by a combination 
of both. 

Dealing first with gas control we can start with an excess of gas and either 
allow a controlled leakage-by bursting diaphragms for example-or allow 
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removal of the gas from the compression-by, say, a port which is covered by 
the piston moving down the barrel. The first of these two methods leads to a 
reduction of piston deceleration and its effect is shown in figure 7, curve (b ) ,  for 
an ideal gas. Here a simple gas leakage with a cross-sectional area equal to the 
launcher barrel area (100 yo leakage) starts a t  = 2, and it can be seen that this 
results in a very good match for the piston requirements. A more complicated 
gas-leakage system could result in an even better match and, further, it  is often 
possible to arrange that the piston will reach the end of barrel with zero velocity. 
This, of course, implies a slight loss in performance since the correct conditions 
cannot then be maintained right up to the throat. 

This solution is excellent for an ideal gas, or real gas up to moderate peak 
pressure. However, for a real gas at high peak pressures the mass-flow require- 
ment becomes linear with time (or even increasing with time at  extremely high 
pressures), resulting in the need for a constant piston velocity at  the end of the 
stroke. In  this case gas control is better applied by the ‘port’ method where the 
excess gas is trapped a t  a pre-arranged part of the piston stroke. Figure 8, 
curve (c ) ,  shows how the mass flow curve can be given an artificial curvature by, 
in this example, trapping one-third of the gas at  E =  2. Further ports could 
improve the match of the two curves and result in zero piston velocity at  the 
end of the stroke. In  some ways this method of gas control is the simpler one 
because it is predetermined. It is, in any case, often necessary to have mechanical 
seals in the pump tube and i t  is difficult to make these seals perfect at  the high 
rates of strain in the pump tube. Thus it may often be possible to make a virtue 
out of a necessity. 

The other method of control of piston motion is by control of the deceleration. 
This method has been applied by Charters & Curtis (1962) by tapering the end 
of the pump tube so that the piston is squeezed down to the diameter of the 
launcher barrel. Treating the piston (of plastic) as an incompressible fluid, we 
have in the piston du 

ax dt 
?!LP -, 

which gives 

where p p  is the piston density, p p  and io, are the piston pressures on the rear and 
front faces, Zp is the initial length of the piston (or equivalent length at  density 
p p ) ,  I, is the length of taper (see figure 9), and X = APIA,. Also 

upA, = u,A,. (41) 

From equation (41) it  is seen that the volume change of the piston is the same 
front and rear so that tapering of the pump tube does not alter the volume sweep 
of the piston, which has been seen in equations (23), (24), (38) and (39) to be the 
important variable in the piston motion. However, accepting this, we see from 
equation (40) that the effective back pressure of the piston is affected by two 
factors: first, the increase in *ppu2 from rear to front of the piston and, second, 
the change in the apparent mass of the piston (the right-hand side of (40)). Of 
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these two effects the first is by far the most powerful. For example, if a polythene 
piston is extruded at 2000 ft./sec without loss of velocity from 1 to$ in. diameter 
the increased back pressure is 8 x 1061b./in.2. Thus, taper is a powerful means of 
slowing down a piston. 

L It- 
FIGURE 9. Tapered pump tube with extruding piston. 

.ci 

0.5 

0 
X 

FIGURE 10. Piston acceleration, helium driving 

The result of a typical ideal gas calculation is shown in figure 7, curve (c), 
where a tapered piston results in a good match up to ft = 1.6. Beyond this point, 
however, the taper effect is far too powerful and so the taper should be ended 
at this point. However, if the taper were ended we should lose one of the main 
advantages of the extruding piston, namely that it avoids unacceptable damage 
if a piston strikes the end of the pump tube. 

To sum up, gas leakage, gas trap, or moderate taper are all satisfactory ways 
of dealing with mismatch, Gas leakage and taper apply for an ideal gas or a real 
gas a t  moderate pressures. Only the gas trap effect applies to a real gas at  high 
pressures. In  some cases gas control may enable the piston to be brought to 
rest at  the end of the barrel, but in other cases taper to the launcher barrel may 
be the only practical way of avoiding damage, although with some loss of 
performance. 

5. Piston acceleration-initial motion 
The acceleration of the piston can be most simply treated by ignoring the 

pressure in front of the piston. The errors due to this assumption are small and 
can in any particular case be removed by a more detailed calculation. What is 
required here is an over-all view of the piston motion. The equation of motion is 
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where 2 = p,A,xlmnpa~, h = ula,, and K ,  is a factor associated with the reflexion 
of characteristics from the reservoir throat (Smith 1958). For helium as the 
driver gas ( y = g), we have K ,  = 1.1 , so that 

h-0.825 
x = + 0.562. 

(1 .1-gq4 (43) 

This relation is shown in figure 10, and it will be seen that for practical purposes 
the piston velocity is limited to a maximum near the sonic speed for helium. 
In turn this will determine the area ratio As in the (E, &) relations (figure 8). 

6. Limitations of the theory 
Apart from the theoretical limitations mentioned throughout the paper there 

are a number of known practical limitations which are difficult, if not impossible, 
to include in any theory. These limitations can be summarized as follows: 

(i) Boundary layer. It has been assumed that boundary-layer effects are 
negligible. If, in fact, these effects are considerable the distribution of velocity 
across the launcher barrel will no longer be constant and the similarity solution 
will no longer be valid. 

(ii) Friction. No allowance has been made for friction either on the model 
or the piston. Little is known about friction of plastics such as nylon and poly- 
thene at  high velocities. No effects have been noted to date. 

(iii) Plastic deformation of barrels. Peak pressures on the pump tube and the 
launcher barrel are well beyond the elastic limits of any material. In principle 
the high-pressure tube can be designed to hold the pressure but the plastic flow 
on the inside of the barrels may prove a limitation. 

(iv) Gas erosion. This has already been a serious problem with helium as the 
driver gas for the model. A substantial improvement has resulted from the use 
of hydrogen, due to the reduction of temperature and heat transfer but as higher 
velocities are obtained the problem must again become a serious one. 

(v) Contamination of gas. Contamination of  the hydrogen results in a loss 
of performance. Erosion may result in gas contamination. 

(vi) Damage due to piston striking the end of the pump tube. This problem has 
been mentioned in 9 4. It may not always be possible to avoid high pressures 
€rom this cause, and some method of damage avoidance may be necessary. 

(vii) Xize  and cost. Launchers for high velocity and a reasonable size of model 
are bound to be large and costly. It may be that higher velocities can only be 
achieved without prohibitive expense by a reduction in model size. 

7. Conclusions 
A similarity solution for the design of a two-stage hypervelocity launcher has 

been presented. It should be possible to design a launcher for a particular 
velocity and model size from theory. There is no theoretical limit of performance; 
larger launchers will give higher velocities and the achievable velocity will be 
set by practical rather than theoretical limitations. 
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Methods of designing for correct piston performance have been discussed and 
the limitations of piston extrusion have been described. 

The author wishes to thank Mr D. F. T. Winter for many useful discussions. 
Crown Copyright is reserved for this paper. It is reproduced by permission 

of the Controller, H.M. Stationery Office. 
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